Infiltration Stormwater Control Practices – Guidelines





And Lessons Learned

Roger Bannerman WDNR

## **Determination of Policy**

#### State Laws

Describe intent

#### Administrative Rules

- Establish specific goals: Performance standards
- Local Ordinances

Technical Standards

- How to achieve performance standards

## The Runoff Management Rules (NR 151)

HTTP://www.dnr.state.wi.us/org/water/wm/nps/stormwater.htm Click on Administrative Rules & Technical Standards



Post Construction Infiltration Performance Standards (by design)

By design, infiltrate sufficient runoff volume so that the post-development average annual infiltration volume shall be a portion of pre-development infiltration volume.

#### **Residential**

90% (1% Cap)

#### **Non-residential**

60% (2% Cap)

## Pre-Development Curve Numbers

Standard based on pre-development condition

CN shall assume "good hydrologic condition" as identified in TR-55 or equivalent methodology

Maximum Cropland Curve Numbers are:
 Hydrologic Soil Group A B C D
 Runoff Curve Number 56 70 79 83

#### **Conventional Pipe and Pond** Centralized Control



West Bend, WI: Infiltration Basin



Backyard Rain Garden – 300 sq. ft. Madison, WI

Roof Area: 1000 square feet

#### Bioretention – Middleton, WI

STE

TIBE

BEST WINGS USA

4

#### Adam St. Inlets to Rain Gardens – Madison, WI

THE REAL PROPERTY AND

Cell B

Cell

Bioretention – Lodi, WI; WDOT (John Voorhees)

Cell A

## **Exclusions**

- Based on groundwater quality protection
- Two categories of exclusions
  - Based on land uses & source areas:
    - » Industrial sites; fueling & vehicle maintenance
  - Based on site restriction for infiltration devices
    - » Karst topography, nearness to wells, etc.

## Exemptions

■ Based on *feasibility* **Two categories of exemptions** – Based on land uses & source areas: » Small parking areas & access roads; redevelopment sites; small in-fill sites; roads/arterial roads in specified areas – Based on site restriction for infiltration devices

- » Measured soil infiltration rate less than 0.6"/hr
  - » Infiltration when soil is frozen

## Technical Standards for Infiltration

- Site Evaluation Standard
- Bioretention Standard
- Infiltration Basin Standard
- Grass Swale Standard
- Rain Garden Standard

HTTP://dnr.wi.gov/org/water/wm/nps/stormwater/techstds. <u>htm</u>

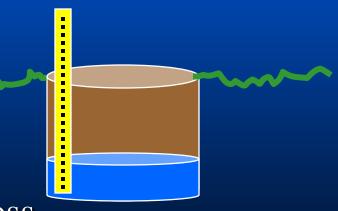
- **Contents of Technical Std.:**
- 1. Criteria
- 2. Considerations
- 3. Plan or Report
- 4. Op. and Maintenance

### Rain Garden Manual on WDNR Web Site

http://www.dnr.state.wi.u s/org/water/wm/nps/rg/in dex.htm

# RAIN




A how-to manual for homeowners

#### New Rain Garden – Cross Plains, WI

## **Determining Your Soil Type**

#### Some hints:

- 1. Soil feels gritty and coarse = sandy
- -2. Soil feels smooth not sticky = silty
- -3. Soil feels sticky and clumpy = clayey
- Have soil analyzed
- Use infiltration test
  - Make 6" diameter hole
  - Fill & Let Stand
  - Fill Again & Time Rate of Loss

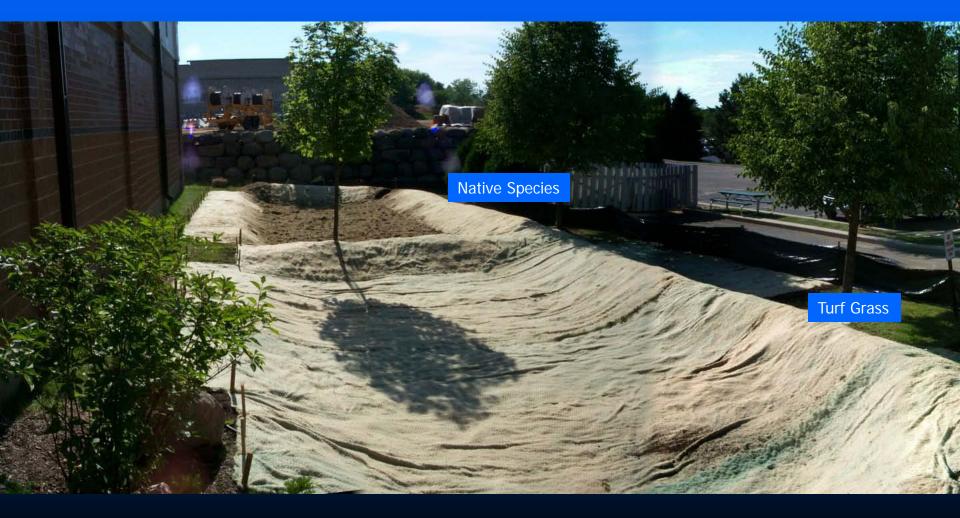




## Long-Term Water Budget of Two Rain Gardens in Madison, WI






## **Breaking Ground**



## **Adding Compost**



Two Rain Gardens in Silt/Clay Soil – 4 to 1 Ratio of Roof To Rain Garden Area





y-1 1

Datalogger

Soil Moisture

Volume In

1

TRADUCTOR DE LA COMPANYA DE LA COMPANYA

Pond Depth

8 F

Volume Out

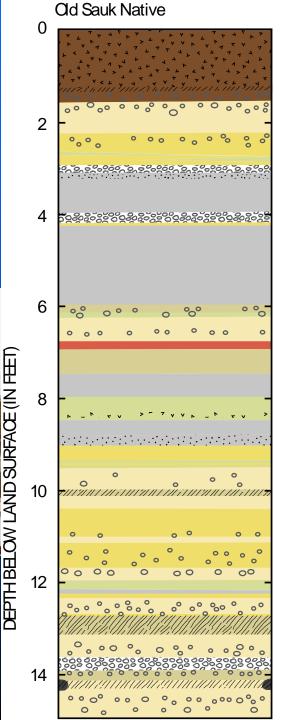
11/3/2003

## Performance Summary for 2007 Gardens in Clay Soil

| Plant<br>Type    | Volume<br>In,<br>Gallons | Volume<br>Out,<br>Gallons | # Events<br>with<br>Ponding | Percent<br>Reduction |
|------------------|--------------------------|---------------------------|-----------------------------|----------------------|
| Turf             | 46,000                   | 107                       | 19                          | <b>99%</b>           |
| Native<br>Plants | 42,000                   | 0                         | 9                           | 100%                 |

Silt/Clay rain garden soil core reveals sand down to approximately 3 feet then turns to clay

5

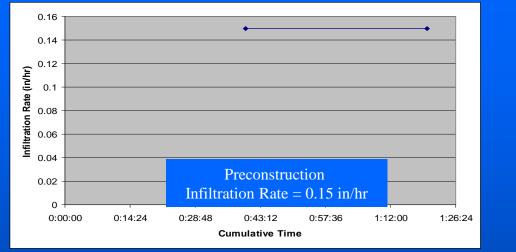

.6

8

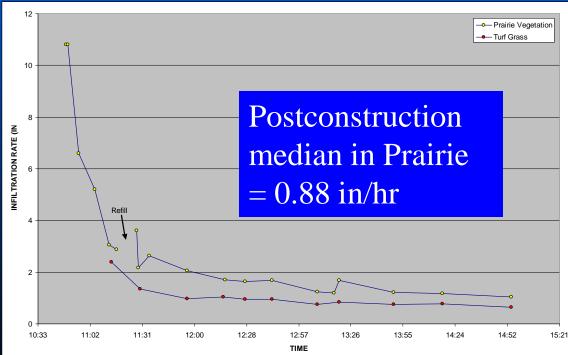
.9

.4

Old Sauk Native 2







#### Significant Zones



#### **Verification of Infiltration Rates**









## Capacity of Prairie Clay Rain Gardens

Storage Volume = 200 cubic feet
Equal Roof Runoff = 1.56 inches (90% of
Events)

Void Space Above Clay = 200 cubic feet Equal Roof Runoff = 1.56 inches

Total Capacity = 3.12 inches of rain

### Winter had lowest infiltration rates and more pooled water



30 Events Over Four Years in January, February, and March – Zero Discharge From Prairie Clay Garden



Prairie Clay Garden

#### **Turf Clay Garden**

#### **Bioretention Perfomance in Cold Climates, Davidson and others, 2008, WERF**



Crystal Lake Bioretention Cell Burnsville, Mn



Cottage Grove Bioretention Cell Cottage Grove, MN



Thompson Lake Bioretention Cell West St. Paul, MN



Stillwater Bioretention Cell Stillwater, Mn

Purpose: Conduct Simulated Snowmelt Events to Measure Response under Winter Conditions



"Characteristically, the fastest rates occurred early winter in the testing season and progressively slowed as the tests were completed later in the season toward spring."

#### Cottage Grove Cell

## Evapotranspiration

- Using modified Penman-Monteith equation
- **Parameters:** 
  - Solar radiation
  - Wind speed
  - Precipitation depth
  - Humidity
  - Air Temperature
- Applies correction factor for vegetation type



## Water Balance in Prairie and Turf Clay Rain Gardens

| Water Year     | Precip.,<br>inches | Influent,<br>inches | Effluent,<br>inches | Evapo,<br>inches | Recharge,<br>inches |
|----------------|--------------------|---------------------|---------------------|------------------|---------------------|
| 2007 (Prairie) | 42                 | 132                 | 0                   | 5 (3%)           | 169 (97%)           |
| 2007 (Turf)    | 42                 | 176                 | 0                   | 23 (11%)         | 194 (89%)           |

## Science for a changing world

Edgewood College Bioretention Systems, Jim Lorman

## Bioretention Engineered Soil Mix – Technical Standard 1004



- <u>40% Sand:</u> ASTM C33 (Fine Aggregate Concrete Sand; 97% Silica)
- <u>20 to 30%Topsoil</u>: USDA sandy loam, loamy sand or loam (Verification by lab test or competent professional)
- <u>30 to 40% Compost:</u>
   Specification 100 (Compost)

Technical Standard 1004 trying to achieve a balance between:

1.adequate infiltration rate
 2. reducing pollutant
 concentration

3. Support plant growth

## Soil Mixing



C C I LA VAND

Clay Textured Topsoil Used

HIM



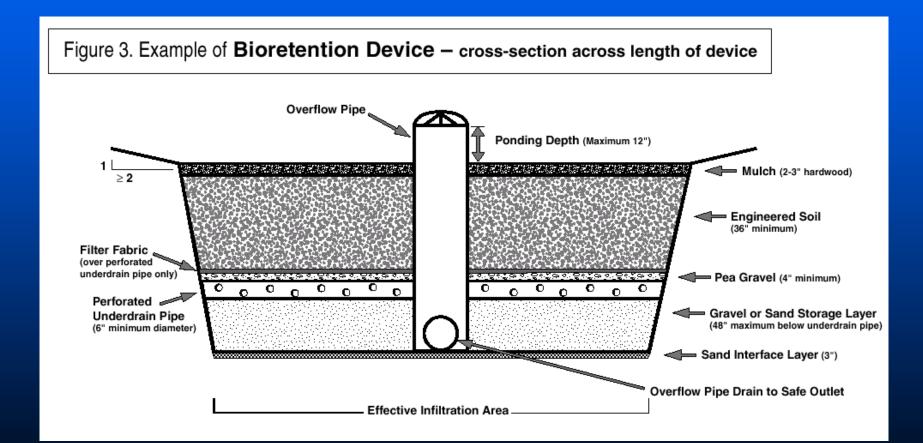


Soil Texture for Two Bioretention Systems in Madison – Number 1 Had Failed

| Site<br>Number | % Organic<br>Matter | % Sand | % Silt | % Clay | Soil<br>Texture |
|----------------|---------------------|--------|--------|--------|-----------------|
| 1 (John Q)     | 3.5                 | 53     | 33     | 14     | Sandy<br>Loam   |
| 2 (Omo)        | 3.0                 | 59     | 28     | 13     | Sandy<br>Loam   |

Prince George County, Maryland – No more than 5% fines.

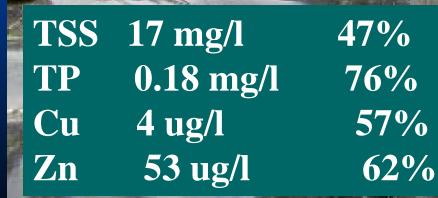



Linda and Mark Piotrowski 28020 El Dorado Place, Lathrup Village Fill Soil Media: 85 – 88% Washed Sand 8 – 12% Fines (Silt + Clay) 3 – 5% Organic Matter

Engineered Soil Mix – University of North Carolina (William Hunt, 2006) Proposed Bioretention Engineered Soil Mix – Technical Standard 1004



- <u>50% Sand:</u> ASTM C33 (Fine Aggregate Concrete Sand; 97% Silica)
- <u>50% Compost:</u> Specification 100 (Compost)
- Use Dolomite or Carbonate
   Sand, But Not Constructed Sand


#### Depth of Engineered Soil (3 Feet = 90% TSS Reducton) – Bioretention Standard 1004



## Bioretention Efficiency – University of North Carolina, William Hunt, 2006

| Location (depth)    | TN Removal, % | TP Removal, %                             | Other, %        |
|---------------------|---------------|-------------------------------------------|-----------------|
| Greensboro (4 ft.)  | 33            | 240 increase – yr 1<br>39 increase – yr 2 | 65 – 99 Cu & Zn |
| Greensboro (4 ft.)  | 43            | 9                                         | 56 – 86 Cu & Zn |
| Chapel Hill (4 ft.) | 40            | 65                                        |                 |
| Louisburg (2.5 ft.) | 64            | 66                                        |                 |
| Louisburg (2.5 ft.) | 68            | 22                                        |                 |
| Charlotte (4 ft.)   | 65            | 68                                        | Fecal Col – 90% |

#### Parking Lot



University of Maryland Allen Davies, 2007

## Cumulative Percent Removal by Depth – Allen Davis, University of Maryland (Lab & Field Results)

| Depth | Cu | Zn | Р  | TN  |
|-------|----|----|----|-----|
| 1 ft. | 90 | 87 | 0  | -29 |
| 2 ft. | 93 | 98 | 73 | 0   |
| 3 ft. | 93 | 99 | 81 | 43  |

## Guidelines for Depth of Engineered Soil – William Hunt, 2006

| Pollutant | Minimum Engineered Mix Depth |  |
|-----------|------------------------------|--|
| TSS       | No Minimum                   |  |
| Metals    | 18 inches                    |  |
| TN        | 36 inches                    |  |
| ТР        | 24 inches                    |  |

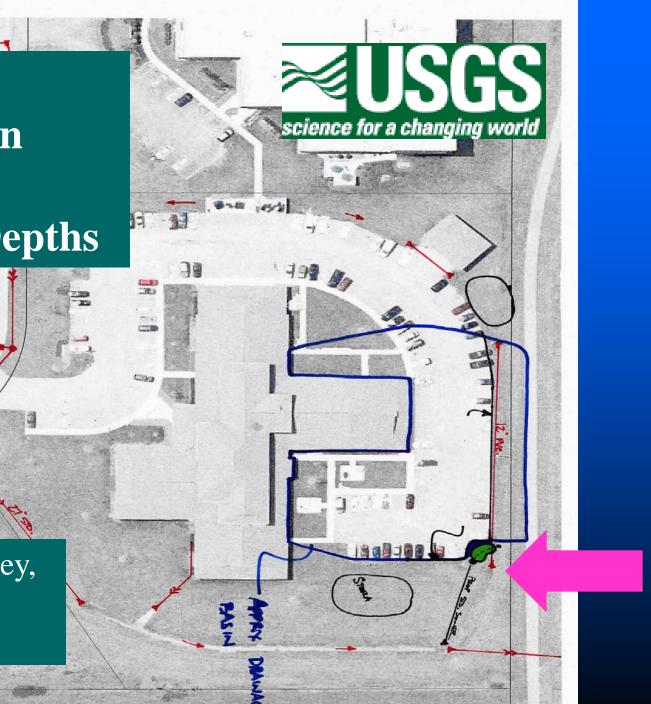
#### TSS 87% 78 75 TP 61% **59** 27 **60** 82 80% Zn TN **44** 32% 27



Austin **Surface** Sand Filter – 18 to 24 inches Thick

#### **University of Maryland Allen Davis, 2003**

Flow Peaks Reduced 50% & Peak Flows Delayed 2 Times or More – Small Storms No Flow

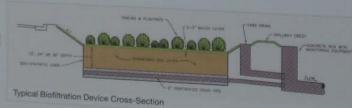

#### William Hunt, 2006

Media Depth for Plants: Trees – 3 feet Shrubs – 2 feet Grass – 18 inches

NOT LE

## Menasha Bioretention Study – 3 Different Depths






#### Biofiltration Research Project brought to you by:



- Schmalz Custom Landscaping
   Faith Technologies
   Waupaca Sand & Solutions
   Wittman Construct
- White Oak Farm
- . Town of Menasha
- Wittman Construction, LLC
- Northeast Wisconsin Stormwater Consortium
- Fox-Wolf Watershed Alliance
   City of Appleton

The purpose of the Biofiltration Research Project is to determine the appropriate amount of engineered soil which is needed to cost-effectively remove stormwater pollutants.



#### 08/05/2009 15:35

TORK









## **Infiltration Basin Technical Standard 1003**

Comparison of Stormwater Runoff Quality and Quantity Using Conventional and LID Strategies








43°6'40"N

89°40'0''W



Base from Dane County Land Information Office Orthophotography, 1:10,000, 2005. Map Projection: Dane County Coordinate System.

89°39'10'W



**Drop-inlets** 







### **Cedar Hills**

-

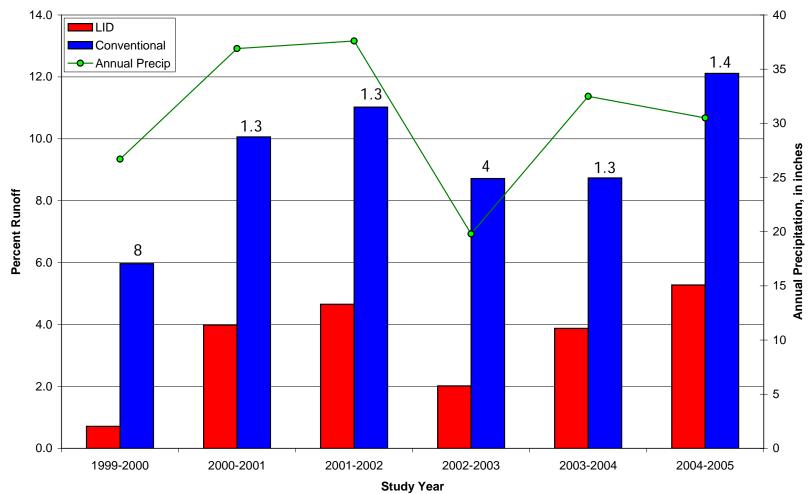
100

**Infiltration Basin: Cedar Hills** 

----

Π

1 11


INTERNATION OF THE OWNER.

.

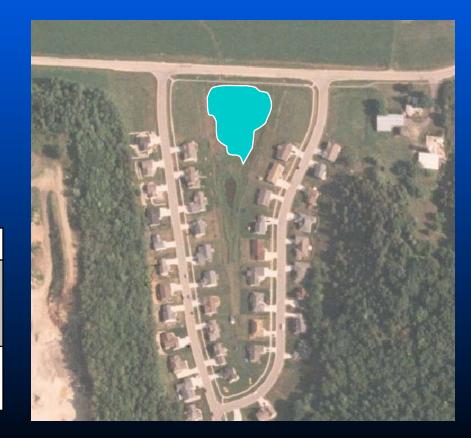
#### 2 Outlets for Wet Pond

#### Level Spreader – Cedar Hills, WI

#### Comparison of Annual Runoff Between the LID and Conventional Basins



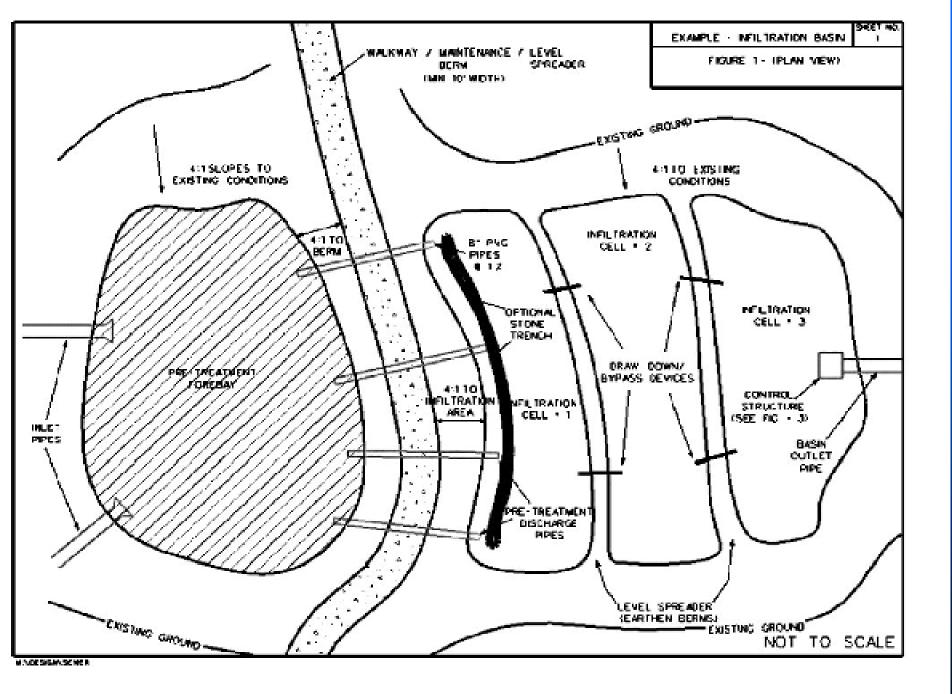
Annual cycle = May through April

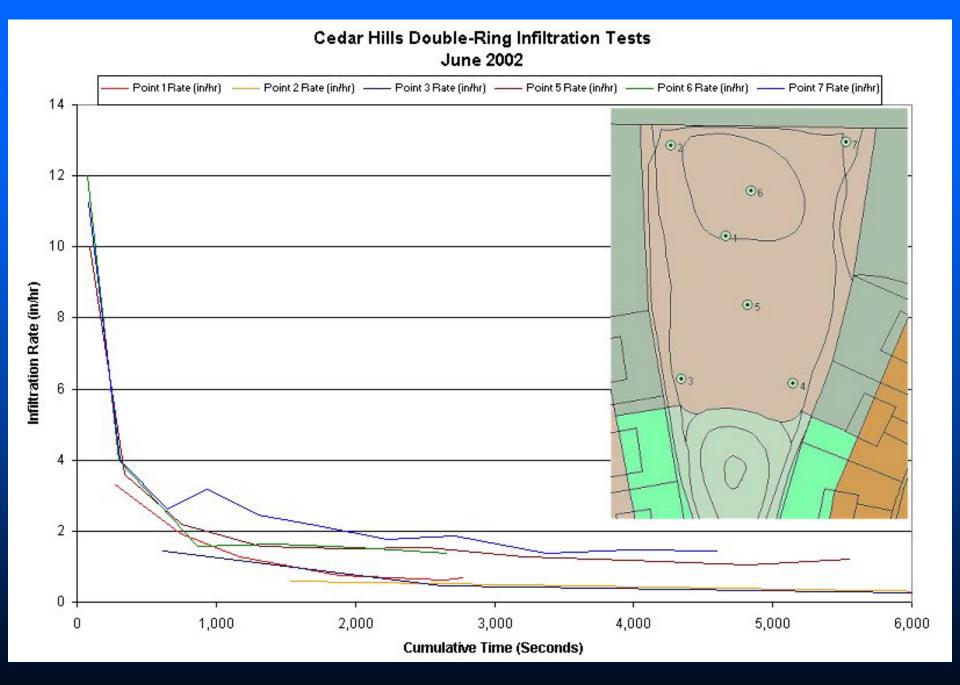


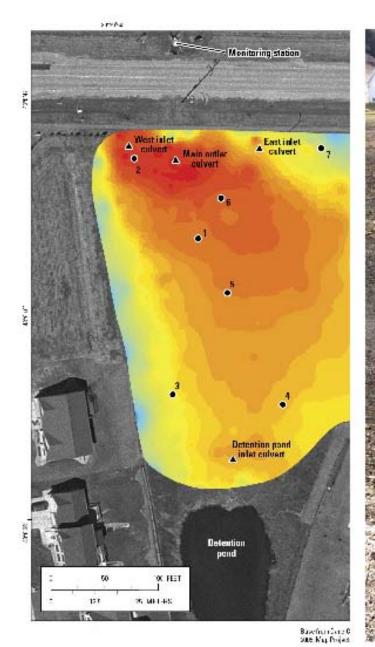

## **Infiltration Basin Performance**



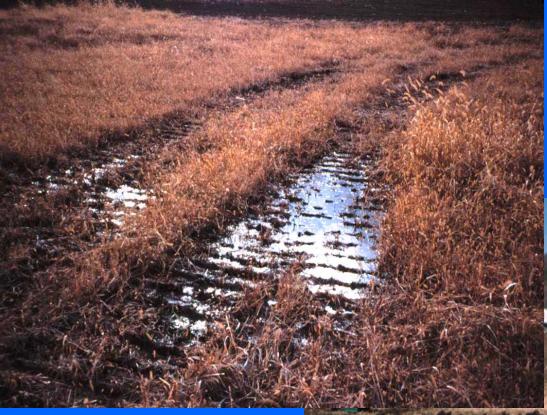
|           | Percent Reduction                        |           |       |  |
|-----------|------------------------------------------|-----------|-------|--|
|           | Precipitation Intensity<br>(inches/hour) |           |       |  |
| Statistic | 0 - 0.5                                  | 0.5 - 1.0 | > 1.0 |  |
| Mean      | 69                                       | 43        | 32    |  |
| Median    | 71                                       | 44        | 43    |  |


#### *Overall Reduction in Runoff Volume for Infil. Basin = 51%*





#### **Diminished Effective Infiltration Area**




Infiltration Standard Requires Breaking Effective Infiltration Area into Cells – when slope is indicated or the flow path exceeds 300 feet.





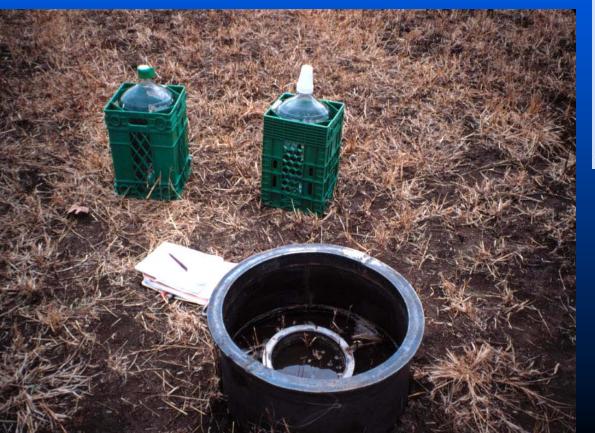


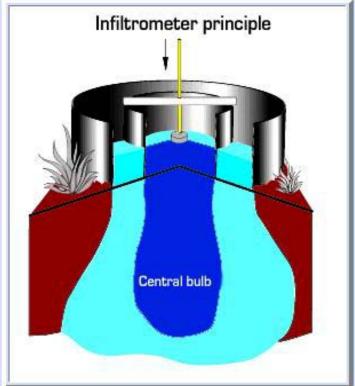
UNIL DAY Detention pond inlet culverts West-inlet culvert



#### **Infiltration Basin with Compacted Soils**

Standard requires adding 2 inches compost and chisel plowing to 12 inches


# Grass Swale Standard 1005 -Construction Criteria


Minimize or mitigate the effects of compaction from grading activities with incorporation of compost into subsoil.
Two inches of compost and top soil incorporated using chisel plow reaching 12 inches below surface.





Double-Ring Infiltrometer – ASTM D3385 – Modified for Use in Wisconsin ( 2 hour test)





## Steps for Site Evaluation Standard 1002

- Step A Initial Screening
- Step B Field Verification of Information Collected in Step A.
- Step C Evaluation of Specific Infiltration Area.
- Step D Soil and Site Evaluation Reporting.

#### Number of Pits and Borings – Step C

| <i>Infiltration<br/>Device</i> | Tests<br>Required            | Minimum<br>Number of<br>Pits or<br>Borings                              | <i>Minimum<br/>Drill/Test<br/>Depth</i> |
|--------------------------------|------------------------------|-------------------------------------------------------------------------|-----------------------------------------|
| Bioretention                   | Pits or Borings;<br>Mounding | 1 test/50 linear<br>feet of device<br>with a Minimum<br>of 2            | 5 Feet or Depth<br>to Limiting Layer    |
| Infiltration<br>Basin          | Pits or Borings;<br>Mounding | 2 Pits per Area;<br>With 1 Pit or<br>Boring for Every<br>10,000 sq. ft. | Pits to 10 Ft. or<br>Borings to 20 Ft.  |

## **Determination of Policy**

#### State Laws

Describe intent

#### Administrative Rules

- Establish specific goals: Performance standards
- Local Ordinances

#### Technical Standards

- How to achieve performance standards

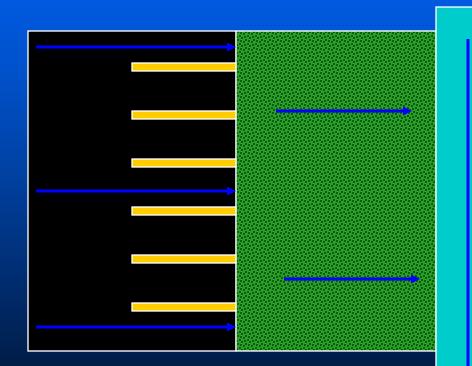
## Technical Standards for Infiltration

- Site Evaluation Standard
- Bioretention Standard
- Infiltration Basin Standard
- Grass Swale Standard
- Rain Garden Standard

HTTP://dnr.wi.gov/org/water/wm/nps/stormwater/ techstds.htm

# Questions?

#### Jeremy Balousek




## Residential Rooftop Disconnection



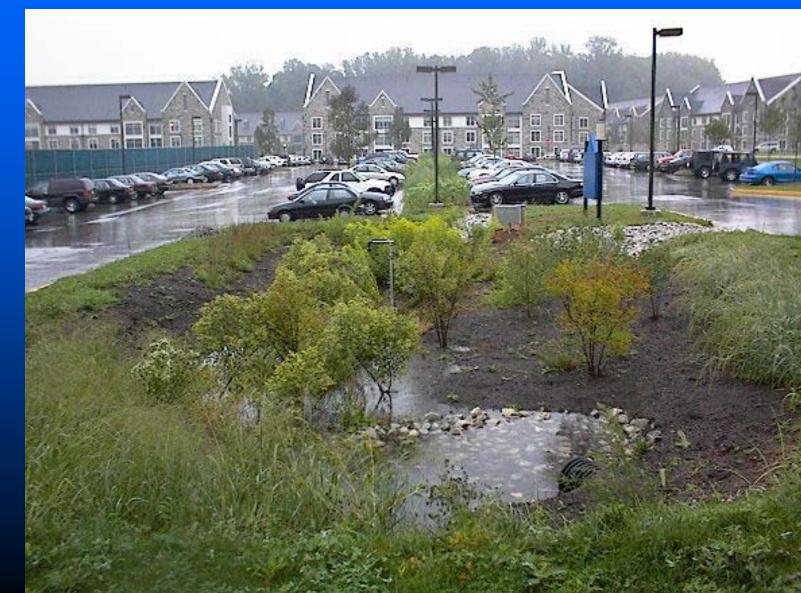
## **Parking Lot Disconnection**

If Parking Lot: 50 feet long (must have sheet flow)



Then grass: At least 50 feet long, sheet flow good condition, slope not to exceed 8%

----Conveyance


## Bioretention – Villanova University, Robert Traver, 2002

Storage: 0.46 in

Void Space: 0.54 in

Drainage Area: 1.2 acres – 50% imperv.

70% control

